
AD..-Ao9 GENERAL RESEARCH CORP SANTA BARBARA CA FIG 9/2
AN AUTOMATED PROGRAM TESTING METHODOLOGY AND ITS IMPLEMENTATIONETC(U)
19GO0 N ANDREWS, J P BENSON pF9G2079-C-O11S

UNCLASSIFIED AFOSR-TR-81-0057 14.,.~ l'E/|||

2. GOV ALESSON NO 1) 1 N' SAT N

1NCEENATOR&OUMNAT Pnteri IF/0P

I~~~~~6 EFRIGOG REPORkT NUMBER OTA,-FSO 6 - AA

7. ATLE(nd SutteB. CYORTOR GT NUMPERIODCO

Dorothy M./Andrews & Jeoffrey P./Benson / F49620-79-C-01151

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

General Research Corporation AE OK-UI UBR

PO Box 6770 ' /d4IA2/Y ~61102F / i
Santa Barbara, CA 93111 / -.

I I CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

Air Force Office of Scientific Research/NM /11980
Boiling AFB, DC 20332 13. NUMBER OF PAGES

I4. MONITORING AGENCY NAME & ADDRESS(iftlifferr,,l fromo C,r-I g Ofi,e) IS. SECURITY CLASS. (of it,,, -rp-f,

UNA DCLASSIFIINED AGRD~

t6. DISTRIBUTION STATEMENT (o, this Report)

APPROVED FOR PUBLIC RELEASE; distribution unlimited.

17. DISTRIBUTION STATEMENT (.1 the ahstract entered in Ito'k 2u, it different from Report) w0T ICwI-1I

I8. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on revr~se side if nece0.-r' and idenfivht hI-;,"A rnumber)

81 '[
AO. ABSTRACT (Cfo, on reerse side It n,re,y and den~titv h,~ hI-.,mh

This paper describes an automated testing- methodology and an1 experiment perforntx(

to determine its effectiveness. Trhe method is to insert in the program to be
t ested a number of "executable assertions,"' statements about the program) that

S trigger error signals whenever they are evaluated to be false (violated). A

CL testcase is then developed for the program using actual values of the. input

0 variables. When the program is run, a plot is generated of the number of -

4) assertions violated versus the input variable values used. Thie resulting

function is called the "error function." Heuristic searchi algorithms Ove
... DD I JA 7 1413 EDITION OF: 1 NOV 651IS OBSOLETE ~''~

'FCIRITY CLASSIFICATION OF THIS PAGE (37,- Ite1e j,,ted

-",an then be used to maximize this function -)id thereby automatically locate

developing asertions for the program to he tested, choosing and inserting

automating the testing of computer programs.

-714

SECURITY CL ASSIFICATIOE OF '"~PAF'in .r I

ArOSR-TRI. 8 1 005 7

AN AUTOMATED PROGRAM TESTING METHODOLOGY
AND ITS IMPLEMENTATION

Dorothy M. Andrews* and Jeoffrey P. Benson

General Research Corporation
P.O. Box 6770

Santa Barbara, California 93111

ABSTRACT the maximum values of the error function. The
input values for which assertions are violated

This paper describes an automated testing are the input values for which the program fails
methodology and an experiment performed to to W(-K correctly; therefore, it is desirable to
determine its effectiveness. The method is to find the regions with the maximum violations.
insert in the program to be tested a number of
executable assertions," statements about the PROBLEMS ASSOCIATED WITH TESTING SOFTWARE
program that trigger error signals whenever they
are evaluated to be false (violated). A test- Testing has always been a problem of
case is then developed for the program using software development. The method used for
actual values of the input variables. When the testing a program is often a product of the id-
program is run, a plot is generated of the iosyncracies of the tester. Typically the test
number of assertions violated versus the input criterion As to execute the program for a
variable values used. The resulting function is certain length of time or run a large progr-1m
called the "error function". Heuristic search through the system. The critical nature of many
algorithms can then be used to maximize this current software systems makes it imperative to
function and thereby automatically locate input develop a generalized methodology for testing;
values which cause the moat errors to occur. one that can be applied to many types of pro-
The experiment included developing assertions grams, thus avoiding the subjective nature of
for the program to be tested, choosing and present testing techniques. One way to minimize
inserting representative errors into the pro- subjectivity is, of course, to have someone who
gram, and Implementing search and data collec- has not been involved in writing the program do
tion algorithms for testing. The results the testing. But this solution in itself brings
indicate that combining executable assertions new problems. The most obvious is that extra
with heuristic search algorithms is an effective time must be allowed to train a new person until
method for automating the testing of computer he is familiar enough with the program to
programs. intelligently make up testcsses and procedures

for testing. Although computer hardware testing
INTRODUCTION and quality assurance is often a separate

department in an organization, this Is not
In recent years, an active research area commonly the case for software testing.

In computer science has been the development of
methods for showing that computer programs Testcases
operate correctly. One result of this rese~rch
has been executable assertions. If assertions There are two ways to make testing more
are used to specify the desired behavior of a reliable: increase the number of testcasee or
program, then the program's correctness (rela- make the testcases more specific to the problem.
tive to the assertions) can be checked automa- Developing testcases requires much human ingen-
tically. This is done by using the number of uity to discover the weak spots in a program and
assertions violated during a test as a correct- develop Input data to test for them. This
ness measure for the program. This value contributes to the skyrocketing cost of testing
Indicates whether the program is operating since each set of testcases must be tailormade
correctly on its input data; the number of for each software system.
asse rtions violated defines an "error function"Itiimoan tocos ecsswhh
over the Input space of the program. ThisItiimoan tocos tecse whh
remove@ the need to examine a program's output uncover errors early in the development cycle,
in detail. not only because the cost of fixing errors

increases dramatically with time, Ibut alsoThe error function can also be used to because of catastrophes that can result from
automatically generate testeases. It allows latent errors.
standard techniques for maximizing and mini-
miin functions in multi-dimensional spaces to There have been many papers2 -3 o h
Apolied totepolmo rga etnsubject of choosing testcases since it repre-Auoatdsearch techniques such as complex sents one of the most intriguing problems of

search and heuristic search can be used to find testing. How does the tester know when enough

input data has been chosen for meaningful evaluate past performances of the constructed
testing? In fault-tolerant applications, the testcases, and, using this information in a
test data must include not only the expected feedback system, generate subsequent testcases.
values of input data, but also the unexpected To adapt this powerful capability to this
values to test for intermittent hardware faults, particular application, executable assertions
Since software can have so many states, the were used as a means of providing data to the
number of testcases required increases exponen- performance evaluator. Executable assertions
tially. allow the method to be prescribed in general

terms and used for any application, since the
Test Results only thing that varies from one application to

another are the assertions themselves.
Software testing is unlike hardware

testing in that there ia no "touchstone" that Executable AssertionsI
can be used as a basis for determining if the
results from the testing are correct. Test Executable assertions have been found
results must be checked manually. In some very effective as a simple debugging technique
applications, e.g., ballistic-missile-defense and have been utilized extensively in the
software, checking test results from one run can development of the Software Quality Laboratory6

take several weeks. 4'5 Unfortunately, with (a large verification system). The primary
software, it is not a matter of determining if a motivation for adding them was to make debugging
switch Is on or off; there is a lot of output to easier and quicker since the exact statement
read and analyze. number of an assertion that is evaluated to

"false" during program execution is stated in a
Last but not least is the psychological message in the output. For example, if the

aspect of testing that works against a produc- assertion INITIAL (J .GE. 0 .AND. J .LE. MA).I
tive testing phase. Once the software is com-), is evaluated as "false", then it is clear
pleted, the programmer is anxious to get onto that J is negative or it has exceeded the
some other project. The challenging and inter- maximum value for J (MAXJ). Without assertions
esting part is designing and implementing the to direct attention to the parts of the program
code, not testing it. No one really wants to that are not operating as expected, it is often
find errors in his own code, and, furthermore, impossible to find the source of the errors that
checking the output is so tedious that it makes are causing the problems.
the testing process seem routine and boring.Noonyaeserisueflordbg

EXECUTABLE ASSERTIONS AND ADAPTIVE TESTING ging when new code is being added, but the
presence of assertions with a special bt;.tement

The major theme that connects most of the to invoke an error recovery routine usually
problems associated with testing is that of prevents premature termination and allows the
time; it takes time to construct good test- program to continue to perform its function.

7
-
1 0

cases, time to run them, and time to look at the Assertions also have proved their worth from the
results. Therefore, one of the ways to address aspect of maintenance and documentation of the
the problem of testing is to automate as much of system. The Software Quality Laboratory is so
the testing sequence as possible and to elimi- large that no one person can be familiar with it
nate as much subjectiveness and human interven- all. Assertions which specify the acceptable
tion as is practical. Fortunately, the basic range of variables help Immensely when new code
mechanism to do this, called an Adaptive Test- is being written to interface with existing

er,
4
,
5 has been developed over the past several code.

years In response to the need of the Ballistic
Missile Defense Advanced Technology Center to The Adaptive Tester
develop tests for complex software. The Adaptive
Tester is a software system with the following The Adaptive Tester has been developed in
functional components: response to the need of the Ballistic Missile

Defense Advanced Technology Center to develop
" Machine aids for specification of the tests for softwsre that simulates actual battle

testing environment conditions. Devising tests in the conventional
fashion takes an inordinate amount of time

* Automatic preparation of initial test because of the number of parameters that can be
cases varied. Additionally, about a month is required

to examine the results of a single run. To get
" Automatic performance evaluation around this situation, ways to perturb the input

variables and evaluate the results automatically

" Adaptive or learning algorithms for have been developed. Various search algorithms
selecting test cases from artificial intelligence have been implemen-

ted to construct new test cases from the results
The research effort described in this of previous tests.

paper has utilized the components of the Adap-
tive Teeter which generate teatcaaes by auto- :iC ~~R 8(FC
matic perturbation of the Input parameters, (FC

Pi "' d End 13
;190 ~i .Y-12 (7b).

*.D. -'.

,)hiiicii1 lnio,-mat ion Officer

The search algorithm selected for this Z
experiment employs complex search. 11-14 The Z
technique was developed by Box for solving for
the maximum or minimum of a nonlinear function.
It involves choosing a set of independent values
for the function at random and determining the
value of the function for each of these values.
The function values define a set of points on a
surface called a "complex". Figure 1 gives an
example of a complex in three dimensions. The
function may have many independent variables,
but, for the search routine to function correct-
ly, there must be one more point in the complex
than the number of independent variables being --------- X
perturbed. Assume that the goal is to maximize
the value of the function. At each step of the
algorithm the point in the complex with the
minimum function value is replaced by a new
point. The algorithm first attempts to locate
the new point on a line connecting the rejected
point and the centroid of the other paints in
the complex. Y

The distance between the rejected pointFiue1 ACopxinTreDmsos
and the centroid is calculated and the exactFiue1 ACopxinTreDmsos
location of the new point is then determined.
The algorithm has six choices in locating the
new point. These are shown in Figure 2 for a REFLECTION
complex that is a triangle. Reflection locates /
the new point at the same distance from the cen-
troid as the rejected point by reflecting the
triangle through the centroid. Expansion
reflects the triangle through the centroid to
locate the new point, but increases the distance---
between the new point and the centroid. Con- IEXPANSION
traction reflects the triangle through the
ceaitroid and reduces the distance that the new
point lies from the centroid. Centroid substi-
tution uses the centroid as the new point of the
triangle. If none of these operations results
in a new point with a function value greater
than the rejected paint, then two other oper- CENTROID
ations on the triangle can be performed. The SUBSTITUTION
triangle can be shrunk by reducing the lengths
of one of its sides or rotating it about its
centroid.

The coefficients of expansion, contrac-
tion, shrinkage and rotation are defined by the CONTRACTION
user of the algorithm. These operations are
performed until a larger function value is
found, a predefined limit on the number of
operations is reached, or the function attains a
value predefined as the maximum value that the
algorithm is to locate.

METHODOLOGY FOR ADAPTIVE TESTING WITH ASSERTIONS SHRINKAGE

The testing methodology used In the
experiment is very similar to that used in the
Adaptive Testing project. The test configuration N
consists of several distinct software subsys- -ROTATION
tems: a test driver, the Adaptive Tester, and an
assertion evaluator. The program being tested
is called the test object. The architecture of
the software is shown in Figure 3.

Figure 2. Complex Transformations

The test object is the program to be
tested; it must contain executable assertions.
Since they are useful throughout the entire

software cycle, 7,10 they should be included in

L%-IcTEST the code as it is being written. This allows

.ATA DRIVER TETBJEcT the c orrectness of the assertions to be valida-
S ted as the code is tested. Since an existing

program was used in the experiment, it was
necessary to write assertions and then execute
the program to be sure the assertions were
correct.

Some assertions, such as range checks, are

TEST simple to write and do not require in-depth
ADAP~i RSULTS AERONfamiliarity with the algorithm. For example, in
TESTER VALUATO

FILE a DO-loop with a variable as the upper bound, it
is easy to write an assertion which specifies
that the value of that variable is greater than
zero. More difficult to write are assertions
which check results of computations or that
express a relationship between the variables.

Fiue3. Software Architecture Since it is necessary to have a firm under-
Figurestanding of the program to write these asser-

To initiate the testing process, the tions, it is generally best for the person who
tester must specify the following data: implements the code to write these assertions.

The success of this testing technique depends on

" The input parameters to be altered by the having a sufficient number of assertions expres-
search algorithm sing tight bounds on variables, thereby enabling

them to detect errors.

araseteor nta vle o ec nu Once the assertions have been written, the
paraeteronly other part of the testing process requiring

9 The range of values that each input human interventiun is setting up the first
parameter may assume, in other words, the testcase. The remaining part of the testing is

conaains fr ech aribleautomatic: the performance is evaluated and new
consaint foreachvaribletestcases are generated until a given perform-

* The maximum number of assertion violations ance value is attained.

expectedEXPERIMENTS

The function of the test driver is to read these
values, initiate the testing process, and Two experiments were performed to deter-
interface with the Adaptive Tester, mine the usefulness of executable assertions in

testing. The purpose of the first experiment
The function of the assertion evaluator is was to determine if execu-table assertions could

to maintain a test results file containing the locate errors; and, If so, what the resulting
following information: error space looked like. The Adaptive Tester

was not used in the first experiment; instead
" The value of each input parameter for the values of the input parameters were metho-

every test dically stepped-up in regular intervals across a
.grid." The first experiment has been described

" The number of assertion violations and the elsewhere, 15but the results indicated that
number of different assertions violated executable assertions were effective in detect-

ing errors and that the error function did not
" The statement and module number where each include singularities.

violation occurred
The prominent research issues for the

" How many times each assertion was violated second experiment were as follows:

The information in the test results file is used * Behavior of the error function - Does it
as input to the search algorithm so it can find confirm the results obtained in the first
values of the Input variables which cause the experiment?
maximum assertion violations. The search
algorithm constructs a new test case using the *Applicable search techniques - Pending
operations described in the previous section and determination of the behavior of the error
returns control to the test driver which exe- function, what sesrch technique is the
cutes the next test. At the conclusion of the most effective in finding errors?
tests, the test results are output in a final
report.

9 Application to large input spaces -What because the experiment was specifically con-
happens when there is a large number of cerned with detecting run-time errors. The types
input parameters? of errors used were computational errors, logic

errors, data handling errors, and interface
The second experiment was more comprehen- er-~s. In generating errors for the experi-

sive since it actually combined the Adaptive ment, statement typeb and other descriptive
Tester with the use of executable assertions. information about the test program were gener-
Since one purpose of this experiment was to ated automatically using the Software Quality
provide corroborative evidence of the first Laboratory. Each statement in the program was
experiment, a new test object was selected. The classified by type, and a table matching error
function of the new program was to input an catagories to statement types was constructed.
orbit described by a set of eight parameters This resulted in a list of available error
(orbital elements) and produce a state vector sites. Potential error sites were then randomly
representation of a point on the orbit. Since selected. Once the assertions were written and
this program had been in use for twelve years checked out, errors were introduced one at a
and had been the test object In another experi- time to determine how effective adaptive testing

ment 17it was assumed to be error free. Yet, using assertions was in detecting errors.
once the assertions were added to the program. For each error, a grid test was run. Then
they uncovered latent errors that were comple- tests using the automated search technique were
tely unsuspected! In most cases, these were run to see if the results were the same. The
errors that occurred only at boundary condi- search technique was used in two ways: first by

tions.perturbing three variables, MODE, VALUE, and one

other variable; and then by perturbing all the
In this second experiment, three modes of variables of the orbit at one time. The search

operation were implemented in the test driver: routine was allowed to run until it found a
preset number of assertion violations (represen-

Grid - ting the performance value); then this number
The values of the input parameters were was automatically stepped up by one and the
varied in a uniform pattern, a grid, over sea rch algorithm tried to find another combina-
the input space. The results from these tion of Input values which would cause a greater
grid tests were used as a baseline by number of violations to occur. In this way, the
which to evaluate the search technique. performance value was maximized. The testing

Search -process was arbitrarily set to terminate whenSearch -one hundred tests were run, but each test
Given one value for each of the tested actually consisted of several subtests because
inputs, the search algorithm constructed the values of MODE and VALUE were varied within
all subsequent test cases, each test. The report that is produced at the

conclusion of the runs is shown in Figure 4. In
Grid and Search - this test MODE, VALUE, and one other variable,
Instead of constructing the Initial points ORBIT(6), the eccentricity, were varied.

on the complex from random testcases, a
set of values for each of the inputs was Test Results
derived for input to the search algorithm.
These values were derived by sorting on The results of the experiment demonstrated
the number of assertion violations obtain- the effectiveness of the assertions in detecting
ed from the grid tests; the input values errors. Of the original 24 errors, nine (38
associated with the highest number of vio- percent) were detected by original assertions,
lations were passed to the search routine and eight (33 percent) were detected by asser-

tions that were added after the grid testing.
In each mode of operation, three variables There were seven errors that could not be

were varied: MODE, VALUE, and the eccentricity detected by assertions. The reasons why these
of the orbit. To examine the effect of varying errors were not detected by assertions were:
a large number of input parameters, additional
tests were run In which all ten of the Input * The seeded error was In a section of code
parameters were perturbed. The Adaptive Tester that wae only traversed after an error
was able to construct test cases and even found occurred.
another assertion violation.

Errr Sedig Assertions could not be written for some
Erro Seeingtypes of errors that were seeded. These

included a misspelled variable name, aErrors were generated for the test program REAL variable declared as INTEGER, and the

using a procedure developed by Brooks. 18 The wrong number of arguments in a subroutine
method usea error types and frequencies from a call.

previous study 19to randomly select a set of e The FORTRAN compiler at this Installation
errors to be "seeded" in the program. Some Initializes all variables to zero, there-
types of errors were not chosen for the study, fore a deleted DATA statement caused no
such as documentation, data definition, etc., problems.

************ FINAL REPORT *************

#RUN INPUTI #FALSE #DIFFERENT MODE VALUE
ASSERTION ASSERTION

7 0.7526 2 2 4 2477545.659

9 .6048 2 2 5 9849931.060

12 .2700 2 2 4 13958923.49

13 .900 1 1 5 24389119.03

24 .2899 2 2 4 8871067.739

25 .3879 2 2 5 1760571.330
30 .2910 2 2 5 20758872.74
34 .7346 1 1 4 22330022.80
35 .1852 2 2 5 27015515.91

37 .3555 2 2 4 19513234.41
44 .6973 2 2 4 4044234.171
45 .6235 2 2 5 0.

47 .5851 2 2 4 4533190.345

49 .9000 2 2 5 0.
51 .7234 2 2 4 4533190.345

53 .9000 2 2 5 5737662.000

55 .7234 2 2 4 7402021.345
63 .7053 2 2 5 0.

65 .6261 2 2 4 4533190.345
73 .7474 2 2 5 0.
75 .6471 2 2 4 4533190.345
83 .8071 2 2 5 U.

85 .6769 2 2 4 4533190.345
86 .1774 1 1 4 23124989.06

87 .9000 2 2 5 1415222.244

89 .7228 2 2 4 5588024.749

90 .9000 2 2 5 1939816.571

91 .1557 2 2 4 6107643.223

92 .5503 2 2 4 9951144.293

93 .3530 2 2 4 8029393.758
94 .4955 2 2 4 11674092.79

95 .8433 1 1 5 18860857.79

96 .5648 2 2 4 11115483.73

97 .7040 1 1 4 14988170.76

98 .6108 1 1 4 17228371.99

99 .2554 2 2 5 3876077.474

100 .5485 2 2 4 11161715.66

101 .4019 2 2 5 7518896.567

102 .1000 2 2 5 7331062.939

INPUTI - ORBIT(6)

MODULE STMT# TYPE FAILURES*

ORBP 109 ASSERT 34

OUTCHK 142 ASSERT 38

* HOW MANY RUNS EACH ASSERTION FAILED IN 102 RUNS

Figure 4. Summary of Search Testing for Error 3

ACKNOWLEDGEMENT
NOT
DETECTED Research sponsored by the Air Force Officef of Scientific Research (AFSc), United States Air

z Force, under Contract F49620-79-C-0115. The
oJ United States Government is authorized to

reproduce and distribute reprints for govern-
o mental purposes notwithstanding any copyright

notation hereon.

REFERENCES

0 1 Tomlinson G. Rauscher, "A Unified Approach to
Microcomputer Software Development", Computer

Magazine, June 1978.

2 John B. Goodenough, Susan L. Gerhart, "Toward

a Theory of Test Data Selection, IEEE Trans-
actions on Software Engineering, Vol. SE-I,

2 3 4 5 6 7 8 9 1C0 l12 1314 15 I617 No. 2, June 1975.
ERROR NUMBER

3 W. E. Howden, "Theoretical and Empirical

Figure 5. Efficiency of Search Method Studies in Program Testing," IEEE Transac-
tions on Software Engineering, Vol SE-4, July

Some of the errors that assertions could not 1978.

detect would have been detected by static-
analysis tools which test the consistent use of 4 D. W. Cooper, "Adaptive Testing," Second
variables. International Conference on Software Engi-

neering, 13-15 October 1976, San Francisco,

For all but four of the errors, the search CA.
methods detected the same errors as the grid
tests; but they were able to do so much more 5 D. W. Cooper, Adaptive Learning Requirements
efficiently and used much less computer time. and Critical Issues, General Research Corp-
Figure 5 shows the efficiency of the search oration CR-4-708, January 1977.
technique when all variables are varied; it
plots the number of the test in which the first 6 J. P. Benson and R. A. Melton, "A Laboratory
assertion violation was detected versus the for the Development and Evaluation of BMD
error number. Fifteen of the seventeen errors Software Quality Enhancement Techniques,"

were detected within the first seven tests Proceedings of the Second International
devised by the search technique. In contrast, Conference on Software Engineering, IEEE
the grid technique was run for 317 tests and Computer Society, 1976, pp. 106-109.
discovered all but one of the errors; but 68J
tests had to be run to detect error number 11. 7 Dorothy Andrews, "Using Executable Assertions

for Testing and Fault Tolerance," 1979
International Conference on Fault Tolerant

CONCLUSION Computing, Madison, Wisconsin, June 2U-
22, 1979.

One of the themes emphasized at recent
conferences is that new methods for system 8 Sabina Saib, "Distributed Architectures for
development and testing are necessary. The need Reliability," Proceedings of the AIM Compu-
to make software less labor intensive must ters in Aerospace Conference II, Los Angeles,
result in new automated programing tools. October 1979.

The results from this experiment indicate 9 Sabina Saib, "Verification and Validation of
that this automated testing technique has the Avionics Simulation," Proceedings of the
potential for finding errors (logic, compu- AGARD Avionics Panel on Modeling and Simula-
tational, etc.) that are difficult to find in tion of Avionics and Command, Control and
other ways. In addition, the search ?Porithm Communications Systems, Paris, France,
eliminates the subjectiveness in constructing October 1979.
testcases and increases the variety of input
values. By automating the testing process, the 10 Dorothy Andrews, "Using Executable Assertions
cost of testing can be reduced dramatically, for Testing," Proceedings of the 13th Annual

Asilomar Conference on Circuits, Systems and
Combining executable assertions with Computers, November 1979.

adaptive search has resulted in a tool which
allows more automation of the software develop- 11 M. J. Box, "A New Method of Constrained
ment process and a more accurate testing envi- Optimization and a Comparison with Other
ronment by which to provide software relia- Methods," Computer Journal, Vol. 8 (1965).
bility.

12 J. A. Richardson and J. L. Juester, "Algo-
rithm 454--The Complex Method for Constrained
Optimization", Comm. ACM, Vol. 6, No. 8,
August 1973.

13 K. D. Shere, "Remark on Algorithm 454," Comm.
ACM, Vol. 7, No. 8, August 1974.

14 K. D. Shere, The Box Optimization Method,
Naval Ordnance Laboratory NOLTR-74-167,
October 25, 1974.

15 J. Benson, A Preliminary Experiment in
Automated Software Testing. General Research
Corporation TM-2308, February 1980.

16 T. Plambeck, The Compleat Traidsman, General
Research Corporation IM-711/2, revised
edition, September 1969.

17 R. N. Meeson, C. Gannon, "An Empirical
Evaluation of Static Analysis and Path
Testing," Proceedings of ALAA Computers in
Aerospace Conference II, Los Angeles, October
1979.

18 N. B. Brooks, An Experimental Evaluation of

Software TestiL General Research Corporation
CR-1-854, May 1979.

19 T. A. Thayer, et al., Software Reliability
Study, TRW Defense and Space Systems Group
RADC-TR-7b-238, Redondo Beach, California,
August 1976.

*Dorothy M. Andrews is now at Xerox Corporation, Palo Alto, California.

LIoATE
I L M El

